Multimode Migration of Scattered and Converted Waves for the Structure of the Hikurangi Slab Interface, New Zealand

John N. Louie
Seismological Laboratory and Dept. of Geological Sciences
Mackay School of Mines, The University of Nevada, Reno, NV 89557-0141 USA
Phone: +1-775-784-4219 Email: louie@seismo.unr.edu Web: www.seismo.unr.edu

Sergio Chávez-Pérez
Direccion Ejecutiva de Exploracion y Produccion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, DF 07730, Mexico

Stuart Henrys and Stephen Bannister
Institute of Geological and Nuclear Sciences, 69 Gracefield Rd., PO Box 30-368, Lower Hutt, New Zealand

Abstract

Reflectivity imaging of local-earthquake seismograms has revealed the structure of the Hikurangi subduction interface, at the location of two strong earthquakes that occurred in 1990. The earthquakes originated within the continental plate of the North Island of New Zealand, and below in the subducting Pacific slab. We used seismograms from 500 well-located events in two earthquake sequences, recorded by a small temporary seismograph deployment, to directly image the structure and multi-phase reflectivity of the plate interface. Synthetic tests of the imaging method show the effects of the poor 3-d geometric coverage afforded by the seismometer array. Kirchhoff-summation image sections computed from synthetics show accurate depth imaging of backscattering interfaces. Phase-converting interfaces imaged with forward-scattered waves are smeared by poor ray coverage to 5 km depth inaccuracy, and are only imaged over a small range of their horizontal extent. From the data we computed image sections for P-P, P-S, S-P, and S-S scattering. We mitigated imaging artifacts due to poor ray coverage with an obliquity factor, an antialiasing criterion, and enhancement by resampling statistics. Imaging used a sharply layered velocity model. We tested for the effects of imaging with first-arriving headwaves by imaging through smoothly varying velocity models. For our ray geometry early-arrival headwaves contribute little to the images.

The plate interface appears as a 3-5 km-thick P-P and possibly S-S backscatterer with 5-degree NW dip, offset 5 km down-to-the-NW above a normal fault in the slab. When illuminated from below, a wedge of the interface on the down-dip side of the slab fault forms a very prominent P-P forward scatterer. The edges of the wedge forward-scatter some S-P and S-S energy, but an order of magnitude less than the P-P forward scattering. The imbalances between forward-scattering of P and S energy suggest a wedge of subducted sediment retaining significant porosity, but with rigidity close to that of surrounding rocks.

Key Words: subduction, seismic reflection, migration, imaging, shear wave, thrust fault.

Introduction

Here we show prestack-migration reflectivity imaging, using earthquake seismograms, of subduction-zone structure that hints at physical properties. We produce, for the first time, a detailed 3-d
seismic scattering image of a subduction interface that is operating in an accretionary mode. The prestack migration at the heart of our imaging procedure relies on simple acoustic assumptions that allow an approximate inverse to the elastic single-scattering problem by backprojection. The migration is almost identical to the procedures used in the petroleum industry to determine structural geometries from the phase information in the wavefield. Starting with the early P- and S-wave codas generated by swarms of earthquakes and recorded by local seismograph arrays, we employ this migration process to image complicated seismic arrivals into candidate reflective structures. By tuning this reflectivity imaging process to match P-P or S-S scattering, and S-P or P-S scattering with mode conversion, we obtain some information about the elastic properties of the structures.

Seismologists may be reluctant to believe that one can successfully image crustal faults using mainly P-P, isotropic scattering characteristics, and earthquake sources. For instance, Aki (1992) shows that P-S conversion for seismic waves is much greater than S-P. Thus, the dominance of S waves in the coda of seismograms raises concern about the validity of dealing with only P-P scattering in imaging crustal reflectors. But oil-related seismic exploration sources are also rich in shear-wave energy, particularly surface sources such as vibrator arrays from which more than 86% of the seismic radiation must be shear waves (Tan, 1985). In spite of this dominance of shear-wave energy, successful P-P scattering applications abound in seismic imaging for fracture detection and reservoir characterization (e.g., Mittet et al., 1997). Chávez-Pérez and Louie (1998) showed the application of P-P scattering to crustal targets in southern California, through wide-angle prestack migration of earthquake recordings.

We examine a west-directed, northwest-dipping subduction zone on the Hikurangi margin at the 1990 Weber earthquake sequence, on the southeast margin of New Zealand's North Island (Figure 1). The Hikurangi oceanic plateau on the Pacific tectonic plate subducts westward at the offshore Hikurangi Trough, at 4-5 cm/yr (DeMets et al., 1994) below the New Zealand continental fragment on the Australian plate. The Hikurangi is the southernmost end of the Tonga-Kermadec subduction zone.

The Weber events occurred mid-way between the earthquake sequences studied by Bannister (1988) to the north, and by Robinson (1986) to the south. Davey et al. (1986) imaged the plate interface offshore from Cape Turnagain with a marine reflection survey, showing a very shallow dip of two to five degrees. Davey and Stern (1990) could trace interface reflections to 14 km depth in prestack migrations of this survey just offshore. The Hikurangi interface was previously examined to the northeast at East Cape (the Raukumara peninsula, Figure 1) recently by Eberhart-Phillips and Reyners (1999), who found a 1-2 km thick plate interface with a high Vp/Vs ratio of 2, from S-P converted waves. Data for our reflectivity imaging of the subduction interface arises with the 500 "passive" sources of the Weber I and Weber II intraplate earthquake sequences (Figure 1).

The 1990 Weber Earthquake Sequences

The first Weber event was the M6.2 Weber I in Feb. 1990, on a steep-NW-dipping normal fault in the slab below the 20-km-deep plate interface. That was followed 3 months later by the M6.4 Weber II event, which was a shallow-dipping southeast-directed thrust above the plate interface. Neither Weber sequence actually ruptured the plate interface at 20 km depth (Robinson, 1994). The Weber I event and its aftershocks are all northeast-striking normal-mechanism events between 20 and 35 km depth within the downgoing oceanic Pacific plate. The Weber II event and its aftershocks three months later are all oblique east-directed thrusts on a northeast-striking fault, between 7 and 20 km depth within the overriding continental Australian plate.

Earthquake depths in the subducting lower plate show the Hikurangi is an extremely shallow subduction zone, dipping only four degrees for up to 200 km west of the plate boundary, where it then
dives sharply below 20 km depth (Reyners, 1980; Robinson, 1986; Bannister, 1988). Seismic surveys (Davey et al., 1986; Davey and Smith, 1983; Davey and Stern, 1990; Davey et al., 1997) have confirmed the shallow depths and dip offshore, and suggested that the subducting Pacific plate is anomalously buoyant, with 15 km crustal thickness. East of the Weber earthquake area, the offshore Pacific plate is layered with up to 2.5 km of sediment and interrupted by volcanic seamounts. As in the Cascadia subduction zone (Flueh et al., 1998), the buoyant and shallow-dipping slab accretes almost all of its thick sedimentary cover to the leading edge of the upper plate (Davey et al., 1986; Davey and Stern, 1990). We examine the properties of the subduction interface where it is buried at 20 km depth at the Weber events, about 150 km inland of the Hikurangi Trough (Figure 1).

We are locating structures by seismic imaging, not by locating aftershock hypocenters. Robinson (1994) developed a local 1-d velocity model from recordings of the Weber earthquake sequence in this area during 1990, on a temporary local array of 10 seismometers. He relocated the events, showing that all aftershocks occurred on the rupture planes of their respective Weber I, II, III, or IV main shocks. We are using these events as sources of energy to illuminate other structures, away from the ruptured faults. We examine both forward-scattering and backscattering of this illumination. The Weber I sequence in the lower plate illuminates with forward-scattered energy the structures associated with the Weber II sequence in the upper plate, which occurred three months later. Conversely, the Weber II sequence illuminates with backscattered energy the deeper structures of the Weber I sequence, months after their main period of activity.

A reflection imaging technique has resolution only where we have an array of both sources and receivers. For a receiver array we have the New Zealand national network, mostly more than 100 km from Weber, supplemented by Robinson's (1994) 10-station portable deployment in 1990. For a source array we use the 500 events with quality-A relocations by Robinson (1994). We used all recordings of the 500 quality-A events where the seismograph and the image point were separated by horizontal distances less than 70 km.

About 200 of the events are Weber I aftershocks in the lower plate; the rest are the Weber II event and its aftershocks in the upper plate. Robinson (1994) found that the data could determine a 1-d velocity model quite well, but did not contain 3-d velocity constraints. He also showed that composite mechanisms of each sequence were very similar to the mechanisms of the mainshocks.

We use only the vertical receiver components, although 3 components are available. Figure 2 shows the good-quality data from the gain-ranged portables and permanent stations. For this figure the traces are sorted and arranged not by epicentral distance, but in order of two-way-reflection travel time from a spot on the plate interface (Figure 1). This ordering allows us to see backscattered coherent arrivals from structures near the interface. These arrivals are nearly parallel to the P-P scatter arrival time marked at the top of Figure 2, for 123 Weber II aftershocks recorded at station AGA (Figure 1). The imaging procedure itself identifies the coherent energy that fits the time imaging conditions of our migration.

Nowhere in the Weber data set do we see the strong S-P conversions that Eberhart-Phillips and Reyners (1999), and Bannister (1988), saw to the northeast. Such conversions would be obvious in the lower part of Figure 2, parallel to the S-P scatter arrival times, if they were strong. This section presents 164 Weber I events, below the interface, recorded at station WTA (Figure 1). The Hikurangi subduction interface usually produces prominent conversions of shear waves from events below it to P waves (Reyners, 1980; Robinson, 1986; Bannister, 1988; Eberhart-Phillips and Reyners, 1999). The phase conversions and low shear velocities (Reyners et al., 1999) suggest the interface to be unusually rich in sediment and fluid, at least in front of seamounts or other structures on the plate. Reyners (1980) had
found strong S-P conversions from the plate interface near Weber decades before the 1990 earthquakes. The absence of such strong conversions at the interface (Figure 2, lower) following the large intraplate Weber I normal-faulting earthquake in 1990 suggests the elastic properties of the plate interface may change substantially over time.

Methods

For structural imaging we are interested first in acoustic images, equivalent to Lamé parameter lambda images. Our efforts to resolve structure are assisted by the special isotropic P-P scattering property for variations in P velocity. The strength of the P-P scattered waves we image depends on Lamé parameter lambda perturbations, which under asymptotic assumptions radiate like point explosions (Wu and Aki, 1985). Forward-scattered and backscattered waves will have the same phase and amplitude. Without having to separate scattered phases on the basis of incidence angle or amplitude-versus-offset, we image variations in the Lamé parameter lambda due to its independence of reflection angle. This lambda-variation imaging is as significant as impedance imaging, since it is proportional to the relationship between compressional and shear velocities (Sato, 1984; Le Bras, 1985; Louie, 1990; Ikelle et al., 1992; Chávez-Pérez and Louie, 1998).

Elastic synthetics illustrate the isotropic scattering property of Lamé lambda perturbations against the more intuitive scattering of rigidity perturbations. Figure 3 shows vertical-component elastic synthetics for two-layer models where Vp jumps with depth from 5 to 6 km/s while Vs stays at 2.9 km/s (for 131% lambda-only perturbation), or where Vs jumps as well to 3.7 km/s (creating a 65% rigidity-only, or mu, perturbation). A fourth-order finite-difference code (Levander, 1988) uses a vertical-motion line source of an assumed Ricker wavelet with 2 Hz central frequency. For backscattered waves, the source is located at 5 km depth, whereas for forward-scattered waves the source is located at 15 km. All four seismograms are recorded on the surface, at a (horizontal) source-receiver distance of 20.8 km. The interface is located at 10 km depth.

Lamé Lambda, P Velocity, and Isotropic Scattering

The backscattering case (Figure 3) shows the first arrival and the early "coda of reflection" (depicting a P-P reflection) for variations in Lamé parameters. The forward-scattering case shows the first arrival (depicting a P-P transmission) and the early "coda of transmission" after that. Note the absence of a forward-scattered S wave (i.e., there is no P-S energy conversion) for the lambda-only scattering component, despite the non-normal incidence of energy.

The contributions of lambda variations are isotropic (Wu and Aki, 1985) and come from local P wave energy, mostly P-P reflections and transmitted P-wave arrivals (Figure 3). This is clearly not the case when one tries to obtain density images or rigidity images. For instance, rigidity (mu) variations lead to anisotropic scattering and one needs to take S waves into account (Figure 3) to correctly image such variations. In the presence of lambda variations, both back- and forward-scattered events can constructively interfere upon migration, while for a rigidity variation they tend to cancel out. The search for structure with lambda (or P-velocity) variations requires only the use of P waves, whereas the search for rigidity variations requires the use of P and S waves. Thus, the search for structures on the basis of P-velocity variations becomes practical with an acoustic processing scheme.

Prestack Multimode Depth Migration

The depth migration method we use is a backprojection of assumed primary reflection amplitudes into a depth section, based on traveltimes through an assumed velocity model. The backprojection
requires knowledge of the source wavelet for deconvolution by crosscorrelation with each seismic trace (Louie et al., 1988; Le Bras and Clayton, 1988). Chávez-Pérez and Louie (1998) roughly approximated this by crosscorrelating with a boxcar function 0.5 s long, close to the central period of the expected reflection arrivals. The net effect of boxcar correlation is to smooth the migration (through low-pass filtering of the data), center the reflection pulses near zero phase, and avoid operator aliasing.

We now set the length of the crosscorrelated boxcar "on the fly" with the operator anti-aliasing criterion of Lumley et al. (1994). This criterion tends to favor reflectors that have low dip, when observed at smaller source-receiver distances, or offsets. Bandpass filtering of the data before migration, keeping frequencies only between 1 and 8 Hz, prevents high frequencies in the near-offset traces from dominating the migrated images. Where the high-cut frequency required for anti-aliasing becomes too low, and the boxcar length becomes longer than about 20 seconds, a particular trace is not summed into the migration. To avoid producing a laterally-discontinuous image holding only scattered near-horizontal reflectors, we relax the anti-aliasing criterion by applying apparent source and receiver spacings (Lumley et al., 1994) that are closer to the minimum than to the maximum of the true spacings.

The anti-aliasing filtering also minimizes phase differences arising from our lack of account for focal mechanisms. We image using traveltimes computed through one-dimensional velocity models, ignoring lateral velocity variations. Our Kirchhoff prestack depth migration process is similar to that of Louie et al. (1988). The migration backprojects assumed primary reflection amplitudes into a depth section. It has been identified by Le Bras and Clayton (1988) as the tomographic inverse of the acoustic wave equation under the Born approximation in the far field, utilizing WKBJ rays for downward continuation and two-way reflection traveltime for the imaging condition. Traveltime versus distance matrices we compute from assumed velocity profiles using Vidale's (1988) finite-difference solution to the eikonal equation. We obtain the final depth-imaged section by stacking the migrated partial images from individual events (common-source records) or stations (common-receiver records).

We achieve an approximate multimode migration by simply altering the travel times that form the process's imaging condition. As described by Louie et al. (1988) and Chávez-Pérez and Louie (1998), the imaging condition for P-P reflections uses a P-wave travel time from the source to the candidate reflection point, plus a P-wave travel time from the reflection point to the receiver. For a multimode migration we simply use the travel time of the desired mode on the appropriate part of the travel path. For the Weber sequence, Robinson (1994) did not determine a separate shear-velocity profile. Hence we roughly estimate the shear-wave travel time for a branch by multiplying its P-wave travel time by the square root of three. So, to compute the imaging condition for an S-P reflection image, for example we add the shear-wave travel time from the source to the reflection point to the P-wave travel time from the reflection point to the receiver.

A multimode migration image must of course be constructed with reference to shear waves and the strong effects of rigidity perturbations on reflected amplitude and sign versus incidence angle (Figure 3). Since we do not account for incidence angle, as Le Bras and Clayton (1988) describe in computing migrations for density variations, our multimode images will not reconstruct properly when summing forward- and backscattered data together. We address this problem only by keeping the migrations of forward- and backscattered seismograms separate. Such a strategy can only be effective where we are targeting one limited reflective area, and can separate out sources from either side of it. The Hikurangi plate interface presents such a target, having sources from the Weber earthquake sequence in swarms both above and below it.

We also ignore source takeoff angle in this work, and we do not correct for even the generally known source mechanisms of the earthquakes in the Weber sequence (Robinson, 1994). Again the Weber
sequence and the temporary seismometer array have a geometry that allows us to image the Hikurangi interface using on average the strong radiation from just one quadrant of the focal spheres. The images include data from aftershocks having nearly identical mechanisms and distributed over relatively small areas. We did not adjust the signs of seismograms according to picked P-wave first motions as Chávez-Pérez and Louie (1998) did. That procedure was most appropriate for strike-slip earthquakes.

We add a criterion that a seismogram cannot contribute to reflection points lying within one second's travel time of the source (i.e., if the source-branch image time is less than one second, no amplitude is summed into the image). This minimum-source-time criterion avoids canceling of multimode reflectivity near the focal sphere. As well, it conforms to the far-field assumptions in the migration theory put forward by Le Bras and Clayton (1988).

Artifacts and Image Enhancement

One of the major problems in Kirchhoff depth migration is image resolution. When we apply this method to data with limited observation geometry, artifacts or false images appear and make the results difficult to interpret. In this case, sparse receiver coverage causes artifacts along elliptical trajectories in the migrated depth section, spreading seismogram amplitudes out along surfaces of equal diffraction travel time. Defocusing of P-S and S-P converted energy by the P-P migration also contributes to image degradation (as would defocusing of P-P energy by an S-P migration). Strong noise will also produce upward sweeping artifacts in the form of "smiles" (i.e., lateral smearing of discontinuous reflections into synforms). Since, at the Hikurangi plate interface, we are interested most in nearly horizontal structure, we apply the square of the standard obliquity factor in the migration. The extra factor of the cosine of the structural dip emphasizes horizontal structures in our images, at the expense of near-vertical structures.

We apply trace equalization for receiver amplitude balancing and approximate spherical divergence correction (i.e., the amplitudes are normalized so that the mean-squared amplitude over the Pg-Sg part of the trace is the same for all traces). When the data are trace-equalized before stack, the effect of noisy traces on the stack is small and precise data editing is not crucial. This is useful for earthquakes because it is roughly equivalent to energy normalization for varying magnitudes and station responses. If noise were small, this procedure would lead to a perfect spherical divergence correction. However, we expect that there is more noise than signal. Thus, trace equalization boosts late arrivals in a practical manner, keeping the noise at the same level for all the traces.

To test the validity of our images, we must determine which imaged structures are real and which are artifacts produced from the imaging of noisy data. One test is a simple resampling analysis, which is done by imaging the data after destroying trace-to-trace coherence by randomly flipping the signs of data traces. Images of resampled data allow us to observe mostly the problems with poor station distribution and coverage, the inadequate number of sources, and the effects due to Kirchhoff operator aliasing. We can directly compare the image resulting from the resampling against the data image to note which features are likely to be artifacts.

Regarding the images migrated from resampled data as transformed noise estimates, we use the focusing measure of Harlan et al. (1984) to enhance the migrated images. This method makes a Bayesian estimate of the expected signal proportion at each image point, given the amplitude histograms of data and noise images (or transforms). We use the signal-expectation image to weight or screen the data migration images. The weighting enhances those areas of the sections arising from the reflections with the most trace-to-trace coherency in the receiver data. The poorly-sampled parts of the images containing mostly smeared, upward-sweeping "smile" artifacts are screened out. Chávez-Pérez et al. (1998) show the application of this enhancement to pre-stack migration of shallow-crustal seismic reflection data.
Synthetic 3-D Migration Tests

For tests of 3-d Kirchhoff reconstruction below a sparse seismometer array, we use again a finite-difference elastic modeling code (Levander, 1988), and the P-P migration procedure described in Chávez-Pérez and Louie (1998). This migration differs from the procedures described above mainly in that it uses no obliquity factor or minimum-source-time criterion. Line sources are the seismic excitation, without conversion to point sources. For the tests we used a more widely spread but much less dense seismometer distribution of over 100 stations, similar to that of the southern California Network (as shown in Chávez-Pérez and Louie, 1998) and not the 10-station Weber deployment of Robinson (1994). We used is one of the worst situations one would expect to find: a small number of sources at all crustal depths, and widely scattered receivers.

We tested the isotropic-reflectivity imaging concept with a flat-layer model of isolated property variations (not shown). The contributions from individual events depicted reflectivity sign changes along the interfaces, where Kirchhoff trajectories — surfaces of equal reflection travel time — from different receivers at very different azimuths contribute to constructing the interface image. In addition, deep sources contribute sign changes along interfaces due to stretching along Kirchhoff trajectories of equal diffraction travel time. The polarity of a reflection from an interface between two very distinct media depends upon whether the incident wave arrives from above or below the interface; the amplitudes of all image points derived from a forward-scattered ray have to be multiplied by -1 before being added in. If this is not done, energy from sources above and below a reflector would tend to cancel instead of adding constructively (Zhiming et al., 1984).

The exception is point Lamé parameter lambda diffractors, which have the same reflectivity for all directions of incidence (e.g., Hu et al., 1988; Zhu and Lines, 1997). We do not do a sign correction based on incidence because the migration algorithm treats the problem as a P-P scattering case for lots of lambda-variation isotropic point diffractors, having the same reflectivity for all directions of incidence. Note that we assume these diffractors are not between distinct media, but only small-scale asymptotic perturbations upon a smooth velocity background.

Figure 4a shows a simple model testing our ability to image a low-velocity fault zone. It corresponds to the material properties of the fault zone model of Igel et al. (1997) used to simulate SH- and P-SV trapped-wave propagation in vertical strike-slip fault zones. However, we model here a flat-layered, low-velocity fault zone similar to a subduction interface. There are five sources with an assumed Ricker wavelet of 3 Hz central frequency, located above and below the low-velocity fault zones at depths of 3, 5, 6, 13, 14 and 15 km. The receiver configuration of the SCSN (as shown in Chávez-Pérez and Louie, 1998) is used for this test. Figures 4b and 4d show the migrated images for the summation of all six contributions, with dip filtering (Hale and Claerbout, 1983) after migration. Figures 4c and 4e show the migrated images of synthetic data after resampling to destroy prestack trace-to-trace coherency.

Note how one can only image, in comparison to the resampled images, distorted pieces of the fault zones. This effect is due to reflectivity stretching along Kirchhoff trajectories of equal reflection travel time. Even in this synthetic example, the realistic sparse receiver distribution has left the fault-zone images at depths as much as one wavelength in error. Here the depth error is about 2 km. Such errors prevent us from identifying the true phase of the imaged reflection, or the sign of the reflection coefficient. This result is, however, very encouraging because of the very small thicknesses of the low velocity zones, less than the predominant seismic wavelength, and zones' perturbations of equivalent magnitude for both the Lamé parameters lambda and rigidity. The lambda image has to cut through the sign reversals that scramble the rigidity image.
Kirchhoff Trajectories and Reflection-Point Coverage

Given an arrival from a source at a station at a given time, we assume it diffracted from some point on an ellipsoid with the source and receiver as foci, a surface of constant diffraction travel time (Figure 5). The ellipsoids are the Kirchhoff migration trajectories through the images. For the long cigar-like ellipsoids the backscattering occurs near the tip and butt of the cigar, with forward scattering occurring around the belly. Although we include here both forward- and backscattered waves, it takes many sources, many receivers and many ellipsoids to define a structure well. Thus we can only image a limited volume between an event swarm and a receiver array, or below both (Von Seggern, 1994).

A 2-d migration of 2-d synthetic acoustic seismograms shows the resolution limits imposed by the limited source and receiver coverage. Fifty 2-d acoustic line sources were buried at depths of 15 to 20 km within Robinson's (1994) 1-d velocity model to generate a set of 500 synthetic seismograms with frequency centered around 6 Hz. Using all the procedures described above, the synthetics were migrated into the 2-d P-P reflectivity section shown in Figure 6. This section would represent a region along the strike of the plate interface, centered near the star on Figure 1. Since the synthetics were generated from a 1-d velocity model, the only reflections should be those from the flat interfaces in the model. For Figure 6 the enhancement by Bayesian signal expectation (Harlan et al., 1984), minimum source time, and squared obliquity were all applied.

Interfaces below the sources only focus in Figure 6 where "depth point" coverage (the density of reflecting points at depth producing data at the receivers) is excellent, with incomplete source deconvolution resulting in about 2 km depth uncertainty. The focusing of overlying interfaces from forward-scattered waves is very poor. Only the presence of a scatterer is suggested, with more than 5 km placement uncertainty within the section. The image of a forward-scattering interface is stretched considerably above it, along the predominant ray paths.

This method provides a practical 3-d imaging tool that allows merging of forward- and backscattered P-P modes for structures having Lamé lambda variations. Additional modes of scattering (P-S, S-P, and S-S) can be imaged if the forward- and backscattered data are migrated separately. Elliptical Kirchhoff trajectories and artifacts due to sparse station distribution appear in all images. However, most can be explained in terms of inadequate receiver coverage and incomplete summation. Two-dimensional acoustic synthetics and 2-d Kirchhoff migration make allowance for the reconstruction of dipping scattering structures. For the case of 2-d elastic synthetics and 3-d Kirchhoff migration, interface details and properties are obscured by phase changes, but structure is interpretable. A simple but effective resampling analysis allows identification of real structures against imaging artifacts. Resampling tests show migrated random noise will not mimic structures.

Results: Multimode Images of the Plate Interface

The eight dip sections in Figure 7 separate out the multimode migration of P-P, P-S, S-P, and S-S forward- and back-scatterers from the Weber event data. Figures 7a through 7d are mostly backscattered images using the shallow Weber II sources. Below in Figures 7e through 7h are mostly forward-scattered images using the deep Weber I sources. Figure 1 shows the line of section.

Superimposed are northeastward views into the focal spheres of the source mainshocks for each section. The refracted nodal plane of the Weber I events is clear between the white negative and black positive reflectivities in the forward-scattered P-P image of Figure 7e. The focal spheres make it clear how we are imaging largely from a single quadrant of each mechanism.
Resolution is best for P-P backscatter below the Weber II sequence, illuminating the slab interface in some detail (Figure 7a). These details are similar though not as clear in the S-S image (Figure 7d). The P-S backscatter (Figure 7b), using only arrivals between the P and S arrival, does not get enough data to focus well geometrically. Its Kirchhoff arcs nevertheless intersect prominent structures. The S-P backscatter image (Figure 7c) can include more data, and shows the interface well over a small area. The P-P forward scattering (Fig. 7e) is especially strong, considering how much less P-S, S-P, or S-S forward scattering takes place. Forward scattering is strongest in a wedge above and just northwest of the Weber I sequence.

Structural Interpretation

An interpretation of the reflectivity sections in Figure 7 is not possible without reference to the extensive previous work on Hikurangi subduction. It is also necessary to refer to the synthetic images in Figures 4 and 6, to understand how structures will appear in such sections. Most fundamental are the findings of Bannister (1988), Davey et al. (1997), Davey and Smith (1983), Davey and Stern (1990), Eberhart-Phillips and Reyners (1999), Reyners (1980), Reyners et al. (1999), and Robinson (1986; 1994): the slab interface is at 20 km depth in the Weber area; it dips about 5 degrees northwest; the oceanic plate is greatly thickened by Chatham Rise and Hikurangi oceanic plateau basalts, seamounts, and sediments; is cut by normal faults; and a low-velocity zone 2-5 km thick is present along the plate interface. The interpreted structure is drawn on Figure 7 beginning purely with these previous results.

We propose in Figure 7 that the plate interface has been offset down to the northwest by 3-4 km. The synthetic tests of Figure 4 allow us confidence that a very thin low-velocity zone can be imaged despite abundant interference from artifacts of poor geometric coverage. The test in Figure 6 shows us that reflectors below the sources and imaged by backscattered waves will image, with the correct dip, at a depth within a few kilometers of the correct depth. Comparisons of resampled images of migrated noise against the data migrations also show us that the imaged reflector will only appear along the segment of the structure directly below the swarm of sources. At the edges, Kirchhoff artifacts will curve upwards. Chávez-Pérez et al. (1998) and Chávez-Pérez and Louie (1998) showed tests confirming that prestack Kirchhoff migration will maintain the true geometric relations between intersecting structures, even though absolute depths may have significant error.

We combine these observations on the performance of prestack migration to interpret slab-interface structure on the backscattered P-P image of Figure 7a. In the center of the section at 17-23 km depth, directly under the swarm of Weber II events (small squares), our interpretation of the plate interface boundaries follows the coherent positive reflectivities (black tones in image). Where the interpreted structure reaches beyond the area under the Weber II swarm, our interpretation simply maintains the 5-degree dip known regionally rather than follow the migration artifacts upwards. The "bright spot" of strong P-P reflection, at 22.8 km depth under the Weber II swarm, follows the 5-degree regional dip exactly. Figures 8d and 8e show this section larger and without interpretation overlain.

The bright spot reflection is interrupted to the east, exactly where the shallowest Weber I normal-faulting events project in Robinson's (1994) relocation. This interruption is believable because it is still underneath the Weber II swarm, where there is sufficient geometric coverage. To find a reflection of similar strength east of the Weber I events but still below the Weber II swarm, we bend the interpreted base of the interface up 3-4 km in a ramp dipping NW at 30 degrees. This displaced reflection can be followed for a few kilometers SE on Figure 7a until it extends beyond the area under the Weber II swarm and is swept into an upward-bending artifact.

In drawing the 30-degree ramp in the bottom of the plate interface on Figure 7a, we are proposing
a ramp in the entire 3-5 km-thick interface. At 5 km directly above the interpreted ramp is another 30-degree NW-dipping structure, which connects down to a 5-degree NW-dipping reflector immediately above the bright-spot reflector. Following both strong positive reflections (black tones) immediately above the bright spot, and both ramps 3-4 km up to the SE, gives us an interpretation of a bend or step in a low-velocity zone, with a double reflection following its upper and lower boundaries. All of this is defined directly below the Weber II event swarm where image quality will be best.

There is a 30-degree NW-dipping reflection between the two ramps defining the bend in the interface. It is certainly possible that this reflection represents the base of the interface, and shows the interface thins over the ramp toward the SE. The interpretation drawn on Figure 7a does not follow this possibility. It is also possible that this reflective ramp, in the middle of the interface, represents the locus of concentrated shear on the subduction thrust itself.

A fourth NW-dipping ramp reflection appears above the ramps of the interface. Note that all these ramps are parallel in the Figure 7a section to the relocated Weber II aftershocks (Robinson, 1994), distributed along the NW-dipping Weber II thrust-fault plane. This ramp and the ramp at the top of the interface also appear on the S-S reflection and S-P conversion migration images, Figures 7c and 7d. We have drawn our interpretation to propose that these shingled ramps compose a duplex thrust system, as envisioned for other subduction zones by Karig (1983) and Hashimoto and Kimura (1999). The even spacing of the five shingles, from the top of the Weber I swarm to the Weber II fault, matches the duplexing model. Evidence for the roof thrust can only be seen on the S-S reflection image of Figure 7d.

The structural interpretation we have drawn on Figure 7 combines preexisting knowledge of the slab interface with our inferences from synthetic tests and resampled migrations to allow us to identify the backscattered P-P reflections in Figure 7a that most likely represent real structure. The double-reflector interface is 3-5 km thick, and dips 5 degrees NW except where it is offset above the Weber I event by 3-4 km downdip. The frontal ramp of the lower-plate step has raised a thrust duplex (Karig, 1983; Hashimoto and Kimura, 1999) out of the upper 2-3 km of the interface. The frontal ramp of the duplex is visible in the P-P backscattering reflectivity. A previous duplex, aligned with the frontal ramps, could explain the mechanism of the Weber II event. Fault-bend thrusting above the duplex is another possible explanation of that event. The backscattered P-P, S-P, and S-S reflectivity below the Weber I sequence (Fig. 2e,g,h) also suggest a Moho in the Pacific plate at 35 km depth. This Moho depth is suggested by the thickening of the oceanic lower plate throughout the Hikurangi to 15 km total by Chatham Rise plateau basalts or by magmatic underplating (Bannister, 1988; Davey and Stern, 1990).

Multimode Bright Spot Observations

The forward-scattered images (Figures 7e-7h) suggest strong diffractions on the downdip side of the interface offset. Our images cannot resolve the downdip extent of this "bright spot" of strong scattered amplitude, or its exact nature. As shown by the synthetic test in Figure 6, lack of complete geometric coverage will only present a distorted image of the scattering interface, over just a small part of its total extent. The forward-scattered images take a flame-like shape extending over more than 5 km depth range. The base of the "flame," however, may be close to the true depth of the interface. Scattering of other phases in the data images of Figures 7e-7h seems strongest at the edges of the bright-spot wedge. The forward-scattered images suggest high P-wave scattering potential and low S-wave potential on the downdip side of the Weber I fault's offset.

The strong P-P scattering (both forward and back) without strong P-S, S-P, or S-S scattering suggests substantial porosity variations without proportionate rigidity variations. A decrease in P-velocity without a decrease in shear velocity can be achieved by lowering the Poisson's ratio of the material within
the slab interface. Oilfield data and porosity-velocity models developed by Pickett (1963) and Castagna et al. (1985) show that shales commonly have Poisson's ratios as low as 0.18. A decrease in Poisson's ratio may also result from a simple increase in pore aspect ratio, from crack-like values below 0.1 to more equant pore shapes with aspect ratios of 0.3 to 1.0 (Hyndman, 1988).

Test of Headwave Effects

Figure 8 tests the effect of including headwave diffractions in our images. Figure 8a shows traveltime contours from a surface source through Robinson's (1994) velocity model that contains sharp refractors. The diffractive, low-energy headwaves are the straight ramps in the contours. We convert the headwaves to diving waves simply by smoothing away the sharp boundaries in the velocity model. The ramps have become, in Figure 8b, higher-energy spherical waves.

Dark tones in Figure 8c show where headwave diffractions would be advanced over diving spherical waves. The maximum advancement is less than 0.1 second, and only appears within 1 km above the refractor. Figures 8d and 8e compare a migration imaging condition using diving waves against imaging including diffracted headwaves, for our P-P backscatter data from Figure 7a. The differences between the images are minimal and do not affect the interpretation. Since we are migrating 2-8 Hz waves, the maximum headwave advance of 0.1 sec is immaterial.

3-D Migrated Image Volumes

With our Kirchhoff-sum imaging technique, true 3-d geometry is always taken into account. Thus migration into a 3-d image volume, instead of an arbitrarily oriented section, is a simple though time-consuming operation (1-2 hours on a Sun Ultra 10, migrating 1739 traces into a 125x125x200-element image volume). The image volume in Figure 9 is 25 km on a side and covers a 20-km depth range from 10-30 km depth. The oblique slice of the volume in Figure 9a presents just the central part of the dip section shown in Figure 7a. It has the same features, as it should, although we have not statistically enhanced the 3-d section and it has more visible artifacts.

Interpreting the depth slice at 19.4 km depth, Figure 9b, has the same problems as interpreting a sectional slice. Similar artifacts appear on sections in both directions. The Kirchhoff trajectories of Figure 5 are approximately ellipsoids of revolution about the sources and receivers at the foci. The artifacts of poor geometric coverage have similar shapes in a constant-depth section to what they show in a cross section. Resolution of geometric details is limited to areas of the constant-depth section below the sources and receivers, just as it was limited in the cross sections of Figures 6 and 7a.

At 20 km depth in Figure 9b we can see the 5-km-thick plate-interface image curving away from the Weber I normal fault (which is deeper) to a more westerly strike. Curvature of the interface seen in the image could be due to artifacts of poor reflection-point coverage. Only the NW half of this depth slice (the left-hand corner) is directly below Weber II events (Figure 1) and may have sufficient constraint. If the curvature follows a real structure, it is worth noting the close correspondence of this structure with the Weber I normal fault, which is directly below. The plate interface is above the Weber I fault only at its largest total throw, in the middle of the volume. The plate interface may be a northwest-plunging synform, with its concave-to-the-northwest shape in the horizontal plan section.

Deeper into the volume on the horizontal section of Figure 9c, the bright spot of strong P-P reflection (dark tones) at the base of the plate interface appears only west of the Weber I normal fault in the lower plate. Deeper cuts into the volume suggest the high-porosity bright spot is entirely within the plate interface. These 3-d images suggest the bright spot and the duplex-thrusted plate interface are
geometrically related. They are both deepest where the pre-existing vertical offset of the Weber I normal fault is greatest.

Discussion

Our seismic reflectivity images (Figures 7 and 9) suggest how a subducted normal-fault offset of the sea floor may entrap a thick wedge of reflective sediment. The continental subduction wedge would then be underplated with this sediment through a process of duplex thrusting (Karig, 1983; Hashimoto and Kimura, 1999), effectively accreting oceanic sediment to the bottom of the continental wedge. This process operates where the upper plate is about 20 km thick. Duplexing thickens the plate landward of the thrust stacking (Davey et al., 1986) that extends the very thin upper plate seaward by accretionary outgrowth. Kopp et al. (1999) describe similar accretionary-wedge thickening in the Celebes Sea from thickened low-velocity crust.

The frontal ramp of the lower-plate step appears to have raised a duplex thrust out of the upper 2-3 km of the interface. The frontal ramps of the duplexes are visible in the P-P backscattering reflectivity (Figure 7a). The oldest duplex interpreted on Figure 7, aligned with the younger frontal ramps underneath and to the SE, could explain the mechanism of the Weber II event. Fault-bend thrusting above the duplex is another possible explanation of that event. Higher topography along the North Island coast (the isolated Puketoi Range, with maximum elevations of 1500 m) above the duplex thrust system is in agreement with this hypothesis. The location of the bright spot of strong scattering appears related to the westward motion of subduction thrusting, and not to the northwest dip of the Weber I fault. This relation suggests tectonic erosion of the accretionary wedge (Ranero and von Huene, 2000) and entrapment of reflective sediment by a few kilometers of preexisting offset on the Weber I normal fault.

Duplex thrusting and wedge thickening by subduction of rugged, normal-faulted oceanic crust was imaged by Ranero and von Huene (2000) along the more steeply dipping subduction zone off Nicaragua. Where Ranero and von Huene (2000) observed seamount subduction, they interpreted erosion and wedge thinning. Reyners et al. (1999), using velocity tomography, saw thickly underplated sediment at 20 km depth pushed in by a high-velocity seamount (as in Kodaira et al., 2000) and interpreted it as accretionary. Our result suggests structural details (Figures 7 and 9) more consistent with accretion and thickening, but apparently resulting from a subducted normal-fault offset rather than a seamount.

To have the 3-5 km displacement suggested by the migrations, the Weber I normal fault should have been present in the ocean floor at least since its subduction at 3.3 Ma. If it had a significant normal offset before subduction, the fault could have bulldozed a wedge of sediment downdip that has not dewatered as completely as elsewhere in the interface. The fact that we have not observed a significant S-P conversion at the sediment-laden plate interface (Figure 2) does not agree with the increased Vp/Vs ratio found within the interface by Eberhart-Phillips and Reyners (1999) to the northeast. At Weber, Lamé's lambda parameter must decrease significantly under constant rigidity, lowering the Vp/Vs and Poisson’s ratios, to explain our observations. Perhaps up to a 3% increase in porosity, at grain triple junctions but not along intergranular faces, could decrease lambda without decreasing rigidity. Such parameters would be similar to the Cascadia interface modeled by Hyndman (1988), with less lithified and higher-porosity sediments trapped in the plate interface.

Conclusions

This natural-source "reflection survey," including forward scattering, was successful in showing active subduction interface geometry at 20 km depth:
1. The Weber I slab-bend normal event is interpreted to maintain a preexisting downdip step in the plate interface. The downdip step might not be a seamount as has been found subducting to the northwest under East Cape.

2. High energy in the P-P forward-scattered image is interpreted as scattering from an anomalous high-porosity wedge of trapped sediment. Porosity is limited to a few percent as bulk rigidity is not much affected.

3. Structural details suggested in the P-P, S-P, and S-S backscattered images of the interface are consistent with the Weber II event taking place either on an active duplex thrust, or on a fault-bend thrust above the duplex.

4. The duplex, possibly doubled at the Weber I fault's offset, is consistent with the coastal accretionary wedge topography above. Although the plate interface itself has unknown seismicity, the ramp and the duplex may increase the area's seismic potential.

5. Synthetic tests show that usable backscattered reflectivity images can be obtained from earthquake seismograms recorded on sparse seismometer arrays. Geometric details will be meaningful only directly below a dense swarm of source earthquakes.

6. Images summing forward-scattered energy can show the presence of strong diffractors and mode-conversions, but will not locate them well or show their extent.

7. Computing separate images for P- and S-reflections as well as mode conversions can yield diagnostic physical property information, most likely related to variations in pore shape and total porosity.

Acknowledgments

Dr. Terry Webb of the New Zealand Crown Institute for Geological and Nuclear Sciences (IGNS) provided access to their comprehensive data base of earthquake seismograms. We thank Russell Robinson of IGNS for providing his earthquake relocations and velocity model. Crucial sabbatical assistance and collaboration were generously provided to J. Louie by E. Smith, M. Savage, and J. Taber of the Victoria University of Wellington, New Zealand. S. Chávez-Pérez was partly funded by CONACYT and the Programa de Yacimientos Naturalmente Fracturados at IMP. The kind efforts of two anonymous reviewers helped to substantially improve the manuscript.

Correspondence and requests for materials can be addressed to Louie: louie@seismo.unr.edu; http://www.seismo.unr.edu/ftp/pub/louie/weber/.

References

Figure 1: Map of the Weber I and II earthquake sequences, with Robinson's (1994) lower-hemisphere focal mechanisms for the mainshocks. All the Weber I aftershocks (diamonds) were located below the 20-km-deep plate interface, illuminating it from below with forward-scattered seismic energy. The Weber II event and all but a few of its aftershocks (squares) were above the interface, illuminating it from above with backscattered energy. Robinson's (1994) deployment of 10 portable seismometers (triangles with two stations noted) along with nearby permanent seismometers of the New Zealand Network provide the vertical-component seismograms we used for reflectivity imaging. Figures 5, 7, and 8 show imaged seismic reflectivity cross sections along the NW-SE black line, and Figure 9 shows reflectivity volumes below the area outlined by the light square.
Figure 2: Common-receiver record sections of 1990 recordings of Weber I (below) and Weber II (above) aftershocks on stations WTA and AGA, respectively (Figure 1). The 1 Hz vertical-component instruments in Robinson's (1994) portable deployment were gain-ranged to prevent digitizer saturation (clipping), and are plotted as variable-density vertical strips in the images after trace equalization. Event magnitudes ranged from 1.0 to 6.4. The traces have epicentral distances ranging from 5 to 30 km and event depths ranging from 7 to 39 km. The traces are arranged in order of diffraction travel times to the "bright spot" on the plate interface at 20 km depth (Figure 1) and not by direct-wave arrival time or azimuth. Thus, reflections and conversions at the plate interface should be coherent from trace to trace while the direct arrivals appear broken. The black lines trace the arrival time across the sections of: top, P-P backscattering at the plate interface from the Weber II events in the upper plate; and bottom, P-P forward scattering and S-P conversion at the plate interface from the Weber I events in the lower plate. Note the direct S arrival has similar amplitude to, and does not stand out against, the earlier-arriving backscattered reflections and converted phases from the upper-plate event. The horizontal-component Weber II recordings share these emergent S arrivals.
Figure 3: Vertical-component elastic synthetics for a two-layer model showing the early P-wave coda for variations in Lamé parameters (lambda and mu) during back- and forward-scattering. A point scatterer on the interface (left white dot) that is an asymptotic variation only in lambda (D_l), corresponding to a P-velocity but not an S-velocity difference, will act as a point explosion when hit by a vertically incident wave, and radiate scattered waves of equal amplitude and sign in all directions (Wu and Aki, 1985). This isotropic scattering radiation is represented by the circular polar plot of constant reflection coefficient. A scatterer that is a variation in rigidity mu (D_m) but not in lambda (D_l), which produces both P- and S-velocity differences, will act as a point couple, radiating as the cosine squared of the incidence angle, and represented by the sigmoid polar plot of reflection coefficient. Note the absence of a forward-scattered S wave for the lambda scattering component.
Figure 4: a) Velocity model and material properties for two horizontal low-velocity fault zone models at 10 km depth. Receivers (black inverted triangles) depict the distance range of model stations used. Fault zone (1) is a 200 m thick flat layer. Fault zone (2) is a 1 km thick flat layer. Six modeled sources at the depths given are summed into each migration. Below, migrated synthetics are on the left, and migrated resampled noise estimates are on the right. b) Migrated depth section (dip filtered) for the 200-m fault zone (1). c) Resampled migrated section (dip filtered) for the 200-m fault zone (1). d) Migrated depth section (dip filtered) for the 1-km fault zone (2). e) Resampled migrated section (dip filtered) for the 1-km fault zone (2). The white dashed line depicts the 10 km depth level where the upper interface of both fault zones is located. White ellipses show pieces of the imaged fault zones (b, d) and artifacts (c, e), whereas black ellipses show multiples (b, d) and artifacts (c, e).
Figure 5: A portion of the station map of Figure 1, cut away to show a partial migration example in the 40-km-deep section. Robinson's (1994) relocated hypocenters for the Weber I and II sequences are projected into the NW-striking section plane. The image example shows the migration of the Weber II recordings at station AGA from Figure 2 (upper) into this section. White indicates negative migrated reflectivity, black positive reflectivity, and gray little reflectivity. The black ellipsoid suggests a locus of backscattered reflection points with an event (black square) and station AGA (black arrows) as its foci. The elongated gray ellipsoid suggests a locus of forward-scattered reflection (or diffraction) points from a Weber I event below the 20-km-deep plate interface, to station WTA (with data shown in Figure 2, lower). Note that the forward-scatter travel time will be only slightly larger than the direct time (as in Figure 2, lower); and that no ellipsoid foci are likely to be in any one section plane.
Figure 6: Migration example of 2-d acoustic synthetic seismograms, created with the 1-d velocity model used by Robinson (1994) to relocate Weber events. The horizontal lines show the depths of the velocity interfaces in the model. The layers have the constant velocities indicated. The LVZ is the 3% velocity drop at the 20-km-deep slab interface. Fifty model sources within the tilted region outlined in white, crossing the interface, were propagated into ten vertical-component model receivers on the surface. Processing of this resampling-enhanced migration was identical to processing of the Weber event data. White indicates negative reflectivity, black positive reflectivity, and gray little reflectivity. The velocity increase at 26 km depth below the LVZ interface images strongly from backscattered reflections, but only directly below the sources. The top of the interface (LVZ) appears strongly as poorly-focused forward-scattered reflectivity above the interface, but only over a limited lateral extent of the interface.
Figure 7: Individually scaled images of backscattered reflectivity using the Weber II events above the plate interface (a-d), and of mainly forward-scattered reflectivity from Weber I aftershocks below the plate interface (e-h). These images are along the subduction-zone dip section line (Figure 1). Blue shows negative reflectivity, red positive reflectivity, and white low reflectivity in these 3-d prestack Kirchhoff migrations of 2-8 Hz bandpass-filtered seismograms. Overlying the event locations on the sections leads to an interpretable structure for the plate interface. Superimposed are northeastward views into each mainshock’s focal sphere, and a duplex-thrust interpretation of interface structure.
The P-P reflectivity in particular (a and e) is strong and coherently shows the structural details of the plate interface. The upward-curving migration artifacts appear in areas with poor reflection-point coverage and can be ignored. Each of the images, computed for a separate scattered phase, has had its amplitude scaled individually for display. The rms amplitudes of the backscattered P-P (a) and S-S (d) images are similar; the S-P (c) image has about half the amplitude of the P-P reflectivity; and the P-S (b) is an order of magnitude lower. The arcing character of the P-S image (b) is due to poor reconstruction of very little P-S energy. The P-P forward scattering (e) is especially strong, considering that an order of magnitude less S-S (h) or P-S (f) forward scattering takes place. The S-P (g) scattering magnitude is about half that of the P-P (e).
Figure 8: Test of the effects of migrating possible headwaves. a) is a travel-time section from Robinson's (1994) 1-d velocity model, used in the migrations of Figure 7, and contoured by taking the time from a source at the upper left, modulo one second. b) is the same travel-time section, but computed after smoothing Robinson's velocity model with a 1.8-by-1.8 km 2-d boxcar averaging kernel. Converting the velocity interfaces into gradients removes headwaves and substitutes diving waves, making the angled headwaves (a) into spherical waves (b). c) shows the time difference between the smoothed-velocity and the original times. The red colors show that, just above an interface, a headwave will arrive up to 0.08 s earlier than a diving wave. d) and e) show the backscattered P-P migration of Figure 7a using headwaves, and the same migration employing the smoothed-velocity travel times (b) for imaging, respectively. The small difference between (d) and (e) shows the 0.08 s headwave advance of these arrivals to 70 km distance is insignificant in the context of the 2-8 Hz waves migrated.
Figure 9: Three-dimensional views of the Weber II backscattered P-P reflectivity volume. The top of the volume is 10 km below the surface, extends to 30 km depth, and is 25 km on a side (light box in Figure 1). Bright colors indicate large-magnitude positive reflectivity; dark tones show negative or low reflectivity. The views are all toward the northeast along the strike of the subducting slab, which dips down to the left (dashed lines). The top view (a) slices the volume along the NW-SE dip section (Figure 1), and reproduces the view of the P-P reflectivity seen in Figure 7a. Because of the distributions of earthquake sources as well as seismograph receivers over regions instead of along lines (Figure 1), imaging quality within most parts of the volume is just as good as in most parts of this section. The middle view (b) slices the volume horizontally at 19.4 km depth, intersecting the frontal ramps of the interpreted duplex thrust complex, which are most prominent above the trace of the Weber I normal fault. The 3-d image is consistent with the ramps having sunk into the downthrown area of normal offset as a northwest-plunging synform, suggested by the northwest-concave shape (white curves) of the structures in horizontal section. The lower view (c) shows that P-P backscattering from the bright spot (Figure 7) arises in a 10-by-10 km area of the plate interface at 21-23 km depth, west of the Weber I normal fault as defined by Robinson's (1994) aftershock relocations.